Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Cancer Prevention ; : 129-138, 2022.
Article in English | WPRIM | ID: wpr-937790

ABSTRACT

Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are bone marrow disorders characterized by cytopenias and progression to acute myeloid leukemia. Hypomethylating agents (HMAs) are Food and Drug Administration-approved therapies for MDS and MDS/MPN patients. HMAs have improved patients’ survival and quality of life when compared with other therapies. Although HMAs are effective in MDS and MDS/MPN patients, they are associated with significant toxicities that place a large burden on patients. Our goal is to develop a safer and more effective HMA from natural products. We previously reported that black raspberries (BRBs) have hypomethylating effects in the colon, blood, spleen, and bone marrow of mice. In addition, BRBs exert hypomethylating effects in patients with colorectal cancer and familial adenomatous polyposis. In the current study, we conducted a pilot clinical trial to evaluate the hypomethylating effects of BRBs in patients with low-risk MDS or MDS/MPN. Peripheral blood mononuclear cells (PBMCs) were isolated before and after three months of BRB intervention. CD45 + cells were isolated from PBMCs for methylation analysis using a reduced-representation bisulfite sequencing assay. Each patient served as their own matched control, with their measurements assessed before intervention providing a baseline for post-intervention results. Clinically, our data showed that BRBs were well-tolerated with no side effects. When methylation data was combined, BRBs significantly affected methylation levels of 477 promoter regions. Pathway analysis suggests that BRB-induced intragenic hypomethylation drives leukocyte differentiation. A randomized, placebo-controlled clinical trial of BRB use in low-risk MDS or MDS/ MPN patients is warranted.

2.
Journal of Cancer Prevention ; : 50-57, 2022.
Article in English | WPRIM | ID: wpr-925178

ABSTRACT

Administration of black raspberries (BRBs) and their anthocyanin metabolites, including protocatechuic acid (PCA), has been demonstrated to exert chemopreventive effects against colorectal cancer through alteration of innate immune cell trafficking, modulation of metabolic and inflammatory pathways, etc. Previous research has shown that the gut microbiome is important in the effectiveness of chemoprevention of colorectal cancer. This study aimed to assess the potency of PCA versus BRB dietary administration for colorectal cancer prevention using an Apc Min/+ mouse model and determine how bacterial profiles change in response to PCA and BRBs. A control AIN-76A diet supplemented with 5% BRBs, 500 ppm PCA, or 1,000 ppm PCA was administered to Apc Min/+ mice. Changes in incidence, polyp number, and polyp size regarding adenomas of the small intestine and colon were assessed after completion of the diet regimen. There were significant decreases in adenoma development by dietary administration of PCA and BRBs in the small intestine and the 5% BRB-supplemented diet in the colon. Pro-inflammatory bacterial profiles were replaced with anti-inflammatory bacteria in all treatments, with the greatest effects in the 5% BRB and 500 ppm PCA-supplemented diets ac-companied by decreased COX-2 and prostaglandin E 2 levels in colonic mucosa. We further showed that 500 ppm PCA, but not 1,000 ppm PCA, increased IFN-γ and SMAD4 levels in primary cultured human natural killer cells. These results suggest that both BRBs and a lower dose PCA can benefit colorectal cancer patients by inhibiting the growth and proliferation of adenomas and promoting a more favorable gut microbiome condition.

3.
Journal of Cancer Prevention ; : 32-40, 2021.
Article in English | WPRIM | ID: wpr-899046

ABSTRACT

Free fatty acid receptor 2 (FFAR2) has been reported as a tumor suppressor in colon cancer development. The current study investigated the effects of FFAR2 signaling on energy metabolism and gut microbiota profiling in a colorectal cancer mouse model (ApcMin/+). FFAR2 deficiency promoted colonic polyp development and enhanced fatty acid oxidation and bile acid metabolism. Gut microbiome sequencing analysis showed distinct clustering among wild-type, ApcMin/+, and ApcMin/+-Ffar2-/- mice. The relative abundance of Flavobacteriaceae and Verrucomicrobiaceae was significantly increased in the ApcMin/+-Ffar2-/- mice compared to the ApcMin/+ mice. In addition, knocking-down FFAR2 in the human colon cancer cell lines (SW480 and HT29) resulted in increased expression of several key enzymes in fatty acid oxidation, such as carnitine palmitoyltransferase 2, acyl-CoA dehydrogenase, longchain acyl-CoA dehydrogenase, C-2 to C-3 short chain, and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit. Collectively, these results demonstrated that FFAR2 deficiency significantly altered profiles of fatty acid metabolites and gut microbiome, which might promote colorectal cancer development.

4.
Journal of Cancer Prevention ; : 32-40, 2021.
Article in English | WPRIM | ID: wpr-891342

ABSTRACT

Free fatty acid receptor 2 (FFAR2) has been reported as a tumor suppressor in colon cancer development. The current study investigated the effects of FFAR2 signaling on energy metabolism and gut microbiota profiling in a colorectal cancer mouse model (ApcMin/+). FFAR2 deficiency promoted colonic polyp development and enhanced fatty acid oxidation and bile acid metabolism. Gut microbiome sequencing analysis showed distinct clustering among wild-type, ApcMin/+, and ApcMin/+-Ffar2-/- mice. The relative abundance of Flavobacteriaceae and Verrucomicrobiaceae was significantly increased in the ApcMin/+-Ffar2-/- mice compared to the ApcMin/+ mice. In addition, knocking-down FFAR2 in the human colon cancer cell lines (SW480 and HT29) resulted in increased expression of several key enzymes in fatty acid oxidation, such as carnitine palmitoyltransferase 2, acyl-CoA dehydrogenase, longchain acyl-CoA dehydrogenase, C-2 to C-3 short chain, and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit. Collectively, these results demonstrated that FFAR2 deficiency significantly altered profiles of fatty acid metabolites and gut microbiome, which might promote colorectal cancer development.

SELECTION OF CITATIONS
SEARCH DETAIL